4,268 research outputs found

    Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection

    Full text link
    Astrophysical neutrinos at ∼\simEeV energies promise to be an interesting source for astrophysics and particle physics. Detecting the predicted cosmogenic (``GZK'') neutrinos at 1016^{16} - 1020^{20} eV would test models of cosmic ray production at these energies and probe particle physics at ∼\sim100 TeV center-of-mass energy. While IceCube could detect ∼\sim1 GZK event per year, it is necessary to detect 10 or more events per year in order to study temporal, angular, and spectral distributions. The IceCube observatory may be able to achieve such event rates with an extension including optical, radio, and acoustic receivers. We present results from simulating such a hybrid detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC, Pune, Indi

    New composition-dependent cooling and heating curves for galaxy evolution simulations

    Get PDF
    In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H] and [Mg/Fe]. They are easily tabulated and can be efficiently interpolated during a simulation. The ionization equilibrium of 14 key elements is determined for temperatures between 10 K and 10(9) K and densities up to 100 amu cm(-3) taking into account collisional and radiative ionization, by the cosmic UV background and an interstellar radiation field, and by charge-transfer reactions. These elements, ranging from H to Ni, are the ones most abundantly produced and/or released by SNIa, SNII and intermediate-mass stars. Self-shielding of the gas at high densities by neutral hydrogen is taken into account in an approximate way by exponentially suppressing the H-ionizing part of the cosmic UV background for H i densities above a threshold density of n(HI, crit) 0.007 cm(-3). We discuss how the ionization equilibrium, and the cooling and heating curves, depends on the physical properties of the gas. The main advantage of the work presented here is that, within the confines of a well-defined chemical evolution model and adopting the ionization equilibrium approximation, it provides accurate cooling and heating curves for a wide range of physical and chemical gas properties, including the effects of self-shielding. The latter is key to resolving the formation of cold, neutral, high-density clouds suitable for star formation in galaxy simulations

    A Cenozoic-style scenario for the end-Ordovician glaciation

    Get PDF
    The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex

    Simulation of Cosmic Ray neutrinos Interactions in Water

    Full text link
    The program CORSIKA, usually used to simulate extensive cosmic ray air showers, has been adapted to a water medium in order to study the acoustic detection of ultra high energy neutrinos. Showers in water from incident protons and from neutrinos have been generated and their properties are described. The results obtained from CORSIKA are compared to those from other available simulation programs such as Geant4.Comment: Talk presented on behalf of the ACoRNE Collaboration at the ARENA Workshop 200

    Long-term carriage, and transmission of methicillin-resistant Staphylococcus aureus after discharge from hospital

    Get PDF
    The purpose of this study was to determine whether patients who become carriers of methicillin-resistant Staphylococcus aureus (MRSA) during their stay in hospital, remain colonized after discharge. Thirty-six patients colonized with MRSA during one of three outbreaks at Utrecht University Hospital (1986-89) were screened 2 or 3 years after they had become carriers. Patients were also interviewed to determine factors contributing to persistent carriage, such as antibiotics, re-admissions to the hospital, presence of skin lesions and chronic diseases. At the same time transmission of MRSA to family members was determined. The epidemic MRSA strain was still found in three patients (8%). One was a cystic fibrosis patient who had had frequent re-admissions to the hospital and had received several course of antibiotic treatment. Both of the other patients had skin lesions: a fistula and a colostomy respectively. None of the 44 family members of the patients was colonized or infected with MRSA. We conclude that long-term MRSA carriage occurs with low frequency and is comparable to persistent carriage of methicillin-sensitive Staphylococcus aureus (MSSA). Transmission of MRSA to healthy individuals in an antibiotic-free environment is a rare event
    • …
    corecore